Part Number Hot Search : 
F2405XDR RA100 02001 SK2A4 5264S AON740 IRKU41 S158NSR
Product Description
Full Text Search
 

To Download DEMO-ATF3X14-32 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Low Noise Pseudomorphic HEMT in a Surface Mount Plastic Package
Technical Data
ATF-38143
Features
* Lead-free Option Available * Low Noise Figure * Excellent Uniformity in Product Specifications * Low Cost Surface Mount Small Plastic Package SOT-343 (4 lead SC-70) * Tape-and-Reel Packaging Option Available
Surface Mount Package SOT-343
Description
Agilent Technologies's ATF-38143 is a high dynamic range, low noise, PHEMT housed in a 4-lead SC-70 (SOT-343) surface mount plastic package. Based on its featured performance, ATF-38143 is suitable for applications in cellular and PCS handsets, LEO systems, MMDS, and other systems requiring super low noise figure with good intercept in the 450 MHz to 10 GHz frequency range.
Pin Connections and Package Marking
Specifications
1.9 GHz; 2 V, 10 mA (Typ.) * 0.4 dB Noise Figure * 16 dB Associated Gain * 12.0 dBm Output Power at 1 dB Gain Compression * 22.0 dBm Output 3rd Order Intercept
SOURCE
8Px
DRAIN
SOURCE
GATE
Note: Top View. Package marking provides orientation and identification. "8P" = Device code "x" = Date code character. A new character is assigned for each month, year.
Applications
* Low Noise Amplifier for Cellular/PCS Handsets * LNA for WLAN, WLL/RLL, LEO, and MMDS Applications * General Purpose Discrete PHEMT for Other Ultra Low Noise Applications
Attention: Observe precautions for handling electrostatic sensitive devices.
ESD Machine Model (Class A) ESD Human Body Model (Class 1) Refer to Agilent Application Note A004R: Electrostatic Discharge Damage and Control.
2
ATF-38143 Absolute Maximum Ratings[1]
Symbol VDS VGS VGD IDS Pdiss Pin max TCH TSTG jc Parameter Drain - Source Voltage [2] Gate - Source Voltage Gate Drain Voltage Drain Current Total Power Dissipation [2] RF Input Power Channel Temperature Storage Temperature Thermal Resistance [3] Units V V V mA mW dBm C C C/W Absolute Maximum 4.5 -4 -4 Idss 580 17 160 -65 to 160 165
Notes: 1. Operation of this device above any one of these parameters may cause permanent damage. 2. Source lead temperature is 25C. Derate 6 mW/C for TL > 64C. 3. Thermal resistance measured using 150C Liquid Crystal Measurement method.
Product Consistency Distribution Charts
250
+0.6 V
300 250 200
200
Cpk = 1.59062 Stdev = 0.73 dBm 6 Wafers Sample Size = 450
IDS (mA)
150
0V
-3 Std
150
+3 Std
100
100
50
-0.6 V
50 0 18
0 0 1 2 3 VDS (V) 4 5
20
22 OIP3 (dB)
24
26
Figure 1. Typical I-V Curves. (VGS = -0.2 V per step)
180 150 120 Cpk = 4.08938 Stdev = 0.03 dB 6 Wafers Sample Size = 450
Figure 2. OIP3 @ 2 GHz, 2 V, 10 mA. LSL=18.5, Nominal=21.99, USL=26.0
160 Cpk = 2.58097 Stdev = 0.14 dB 6 Wafers Sample Size = 450
120
-3 Std
90 60
+3 Std
80
-3 Std
+3 Std
40
30 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 NF (dB)
0 15
15.5
16
16.5
17
17.5
18
GAIN (dB)
Figure 3. NF @ 2 GHz, 2 V, 10 mA. LSL=0, Nominal=0.44, USL=0.85
Figure 4. Gain @ 2 GHz, 2 V, 10 mA. LSL=15.0, Nominal=16.06, USL= 18.0
Note: Distribution data sample size is 450 samples taken from 6 different wafers. Future wafers allocated to this product may have nominal values anywhere within the upper and lower spec limits.
Measurements made on production test board. This circuit represents a trade-off between an optimal noise match and a realizeable match based on production test requirements. Circuit losses have been deembedded from actual measurements.
3
ATF-38143 Electrical Specifications
TA = 25C, RF parameters measured in a test circuit for a typical device Symbol Idss [1] VP [1] Id gm[1] IGDO Igss Parameters and Test Conditions Saturated Drain Current Pinchoff Voltage Quiescent Bias Current Transconductance Gate to Drain Leakage Current Gate Leakage Current f = 2 GHz NF Noise Figure VDS = 1.5 V, VGS = 0 V VDS = 1.5 V, IDS = 10% of Idss Units Min. Typ.[2] Max. mA V 90 -0.65 118 -0.5 10 230 30 0.6 0.4 0.3 0.6 0.4 0.3 15 dB 15.3 16.0 17.0 17.0 19.0 20.5 22.0 22.0 6.0 3.0 12.0 12.0 145 -0.35 -- -- 500 300 0.85
VGS = -0.54 V, VDS = 2 V mA -- VDS = 1.5 V, gm = Idss /VP mmho 180 VGD = -5 V VGD = VGS = -4 V VDS = 2 V, IDS = 5 mA VDS = 2 V, IDS = 10 mA VDS = 2 V, IDS = 20 mA VDS = 2 V, IDS = 5 mA VDS = 2 V, IDS = 10 mA VDS = 2 V, IDS = 20 mA VDS = 2 V, IDS = 5 mA VDS = 2 V, IDS = 10 mA VDS = 2 V, IDS = 20 mA VDS = 2 V, IDS = 5 mA VDS = 2 V, IDS = 10 mA VDS = 2 V, IDS = 20 mA VDS = 2 V, IDS = 10 mA VDS = 2 V, IDS = 10 mA VDS = 2 V, IDS = 10 mA VDS = 2 V, IDS = 10 mA VDS = 2 V, IDS = 10 mA VDS = 2 V, IDS = 10 mA A A dB --
f = 900 MHz
dB
f = 2 GHz Ga Associated Gain[3]
dB
18
f = 900 MHz
OIP3 IIP3 P1dB
Output 3rd Order Intercept Point [3] Input Order Intercept Point [3] 1 dB Compressed Compressed Power [3] 3rd
f = 2 GHz f = 900 MHz f = 2 GHz f = 900 MHz f = 2 GHz f = 900 MHz
dBm 18.5 dBm dBm dBm dBm dBm
Notes: 1. Guaranteed at wafer probe level. 2. Typical value determined from a sample size of 450 parts from 6 wafers. 3. Measurements obtained using production test board described in Figure 5.
Input
50 Ohm Transmission Line (0.5 dB loss)
Input Matching Circuit mag = 0.380 ang = 58.2 (0.46 dB loss)
DUT
Output Matching Circuit mag = 0.336 ang = 34.5 (0.46 dB loss)
50 Ohm Transmission Line (0.5 dB loss)
Output
Figure 5. Block diagram of 2 GHz production test board used for Noise Figure, Associated Gain, P1dB, and OIP3 measurements. This circuit represents a trade-off between an optimal noise match and a realizable match based on production test board requirements. Circuit losses have been de-embedded from actual measurements.
4
ATF-38143 Typical Performance Curves
30 25
OIP3, P1dB (dBm)
OIP3
30 25
OIP3, P1dB (dBm)
OIP3
0.7 0.6
NOISE FIGURE (dB)
20 15 10 5 0 0 10 20 30 40 50 60 CURRENT, IDS (mA)
P1dB
20 15
P1dB
0.5 0.4 0.3 0.2 0.1 0
10 5 0 0 10 20 30 40 50 60 CURRENT, IDS (mA)
0
10
20
30
40
50
60
CURRENT, IDS (mA)
Figure 6. OIP3 and P1dB vs. Id at 2V, 2 GHz.
Figure 7. OIP3 and P1dB vs. Id at 2V, 900 MHz.
Figure 8. Noise Figure vs. Id at 2V, 2 GHz.
0.7 0.6
NOISE FIGURE (dB)
22
ASSOCIATED GAIN (dB)
22
ASSOCIATED GAIN (dB)
21 20 19 18 17 16 15 0
21 20 19 18 17 16 15 0
0.5 0.4 0.3 0.2 0.1 0 0 10 20 30 40 50 60 CURRENT, IDS (mA)
10
20
30
40
50
60
10
20
30
40
50
60
CURRENT, IDS (mA)
CURRENT, IDS (mA)
Figure 9. Noise Figure vs. Id at 2V, 900 MHz.
Figure 10. Associated Gain vs. Id at 2V, 2 GHz.
Figure 11. Associated Gain vs. Id at 2V, 900 MHz.
Notes: 1. Measurements made on a fixed tuned production test board that was tuned for optimal gain match with reasonable noise figure at 2 V 10 mA bias. This circuit represents a trade-off between an optimal noise match, maximum gain match and a realizable match based on production test board requirements. Circuit losses have been de-embedded from actual measurements. 2. P1dB measurements are performed with passive biasing. Quiescent drain current, IDSQ, is set with zero RF drive applied. As P1dB is approached, the drain current may increase or decrease depending on frequency and dc bias point. At lower values of IDSQ the device is running closer to class B as power output approaches P1dB. This results in higher P1dB and higher PAE (power added efficiency) when compared to a device that is driven by a constant current source as is typically done with active biasing.
5
ATF-38143 Typical Performance Curves, continued
0.9 0.8 25 0.7 0.6
Fmin (dB) Ga (dB)
30
1.6 1.4 Ga Fmin 1.2
Ga (dB)
30 25 20 15 10 5 0 0 2 4 6 8 10 12 FREQUENCY (GHz)
5 mA 10 mA 20 mA
20 15 10
5 mA 10 mA 20 mA
1.0 0.8 0.6 0.4
0.5 0.4 0.3 0.2 0.1 0 0 2 4 6 8 FREQUENCY (GHz)
5 0 0 1 2 3 4 5
-40 C +25 C +85 C
0.2 0 7
6
FREQUENCY (GHz)
Figure 12. Fmin vs. Frequency and Current at 2V.
Figure 13. Fmin and Ga vs. Frequency and Temperature at 2V, 10 mA.
Figure 14. Associated Gain vs. Frequency and Current at 2V.
26
GAIN (dB), P1dB and OIP3 (dBm)
30 25 20
1.4 1.2 1.0
NF (dB) GAIN (dB), P1dB and OIP3 (dBm)
30 25 20
1.4 1.2 1.0 0.8
NF (dB)
24
P1dB, OIP3 (dBm)
22 20 18 16 14 12 10 0 2000 4000 6000 8000 FREQUENCY (MHz)
-40 C +25 C +85 C
0.8 15 0.6 10 5 0 0 10 20 30 40 50 60 CURRENT, IDS (mA)
P1dB OIP3 Gain NF
15 0.6 10 5 0 0 10 20 30 40 50 60 CURRENT, IDS (mA)
P1dB OIP3 Gain NF
0.4 0.2 0
0.4 0.2 0
Figure 15. P1dB and OIP3 vs. Frequency and Temperature at 2V, 10 mA.
Figure 16. NF, Gain, P1dB and OIP3 vs. IDS at 2V, 3.9 GHz.
Figure 17. NF, Gain, P1dB and OIP3 vs. IDS at 2V, 5.8 GHz.
Notes: 1. P1dB measurements are performed with passive biasing. Quiescent drain current, IDSQ, is set with zero RF drive applied. As P1dB is approached, the drain current may increase or decrease depending on frequency and dc bias point. At lower values of IDSQ the device is running closer to class B as power output approaches P1dB. This results in higher P1dB and higher PAE (power added efficiency) when compared to a device that is driven by a constant current source as is typically done with active biasing.
6
ATF-38143 Typical Scattering Parameters, VDS = 2 V, IDS = 5 mA
Freq. (GHz)
0.5 0.8 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0
S11 Mag.
0.98 0.95 0.93 0.87 0.82 0.80 0.75 0.71 0.67 0.66 0.66 0.68 0.70 0.72 0.74 0.78 0.82 0.83 0.85 0.87 0.88 0.88 0.89
Ang.
-25 -40 -51 -75 -89 -98 -120 -139 -170 162 137 113 92 73 56 39 23 10 -2 -16 -30 -39 -50
dB
14.47 14.19 14.00 13.28 12.79 12.45 11.48 10.48 8.68 7.24 6.02 4.78 3.51 2.39 1.51 0.44 -0.73 -2.17 -3.54 -4.84 -6.16 -7.51 -9.07
S21 Mag.
5.289 5.122 5.010 4.613 4.362 4.192 3.751 3.342 2.716 2.302 2.000 1.734 1.498 1.316 1.190 1.052 0.919 0.779 0.665 0.573 0.492 0.421 0.352
Ang.
160 148 140 122 111 105 89 76 52 30 10 -10 -29 -47 -64 -83 -100 -117 -132 -147 -161 -176 173
dB
-26.56 -22.85 -21.21 -18.49 -17.52 -16.95 -16.19 -15.70 -15.44 -15.44 -15.60 -15.92 -16.59 -17.20 -17.46 -17.86 -18.42 -19.33 -20.00 -20.45 -20.82 -21.11 -21.83
S12 Mag. Ang.
0.047 0.072 0.087 0.119 0.133 0.142 0.155 0.164 0.169 0.169 0.166 0.160 0.148 0.138 0.134 0.128 0.120 0.108 0.100 0.095 0.091 0.088 0.081 73 63 56 41 33 28 16 5 -12 -27 -41 -55 -67 -77 -86 -97 -106 -115 -121 -129 -136 -145 -151
S22 Mag.
0.67 0.65 0.62 0.56 0.52 0.50 0.44 0.40 0.34 0.31 0.29 0.28 0.29 0.32 0.37 0.42 0.47 0.52 0.57 0.63 0.68 0.71 0.75
Ang.
-21 -32 -40 -58 -69 -77 -94 -110 -138 -162 173 146 121 103 87 66 47 28 11 0 -12 -26 -37
MSG/MAG (dB)
20.51 18.52 17.60 15.88 15.16 14.70 13.84 13.09 12.06 11.34 10.81 10.35 8.89 7.33 6.93 6.66 6.22 4.93 3.95 3.58 2.90 1.98 1.24
ATF-38143 Typical Noise Parameters
VDS = 2 V, IDS = 5 mA Freq. Fmin GHz dB 0.5 0.18 0.9 0.21 1.0 0.22 1.5 0.26 1.8 0.29 2.0 0.32 2.5 0.40 3.0 0.48 4.0 0.60 5.0 0.70 6.0 0.84 7.0 0.96 8.0 1.12 9.0 1.27 10.0 1.38 opt Mag. 0.69 0.69 0.68 0.68 0.66 0.65 0.62 0.59 0.50 0.49 0.51 0.53 0.54 0.59 0.62 Ang. 14 26 27 44 59 61 80 98 127 163 -169 -140 -111 -88 -68 Rn/50 0.25 0.23 0.22 0.20 0.17 0.17 0.14 0.11 0.08 0.04 0.04 0.09 0.20 0.36 0.60 Ga dB 23.0 20.5 19.8 17.1 16.0 15.4 14.3 13.1 10.8 9.8 8.7 7.7 6.8 6.1 6.0
25 20
MSG/MAG and S21 (dB)
15 10
MSG
MAG
5 0 -5 -10 0
S21
2
4
6
8
10 12 14
16 18
FREQUENCY (GHz)
Figure 18. MSG/MAG and |S21|2 vs. Frequency at 2 V, 5 mA.
Notes: 1. Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information. 2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point.
7
ATF-38143 Typical Scattering Parameters, VDS = 2 V, IDS = 10 mA
Freq. (GHz)
0.5 0.8 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0
S11 Mag.
0.97 0.93 0.91 0.83 0.78 0.76 0.71 0.68 0.65 0.65 0.66 0.68 0.71 0.73 0.75 0.79 0.82 0.84 0.85 0.87 0.88 0.88 0.89
Ang.
-29 -47 -58 -85 -100 -109 -131 -150 180 153 129 107 87 68 53 36 20 8 -4 -18 -31 -41 -51
dB
17.41 17.00 16.69 15.69 15.02 14.57 13.38 12.22 10.24 8.68 7.35 6.03 4.72 3.57 2.71 1.61 0.47 -0.93 -2.24 -3.45 -4.63 -5.81 -7.27
S21 Mag.
7.423 7.081 6.834 6.086 5.634 5.350 4.665 4.083 3.251 2.716 2.330 2.003 1.722 1.509 1.366 1.204 1.055 0.898 0.773 0.672 0.587 0.512 0.433
Ang.
158 145 136 117 107 100 86 73 50 30 11 -9 -27 -43 -60 -78 -94 -110 -125 -140 -153 -167 -179
dB
-27.74 -24.01 -22.50 -20.00 -19.17 -18.71 -17.99 -17.65 -17.27 -17.08 -16.95 -16.95 -17.27 -17.46 -17.27 -17.39 -17.65 -18.34 -18.86 -19.17 -19.49 -19.74 -20.54
S12 Mag. Ang.
0.041 0.063 0.075 0.100 0.110 0.116 0.126 0.131 0.137 0.140 0.142 0.142 0.137 0.134 0.137 0.135 0.131 0.121 0.114 0.110 0.106 0.103 0.094 72 61 55 40 33 28 18 9 -5 -18 -30 -42 -53 -62 -72 -83 -94 -104 -112 -122 -131 -141 -148
S22 Mag.
0.53 0.51 0.48 0.42 0.39 0.37 0.33 0.31 0.28 0.28 0.28 0.29 0.32 0.35 0.40 0.45 0.50 0.54 0.59 0.63 0.67 0.70 0.74
Ang.
-26 -40 -50 -72 -85 -94 -114 -132 -163 172 147 122 99 83 70 52 35 17 2 -8 -19 -32 -41
MSG/MAG (dB)
22.58 20.51 19.60 17.84 17.09 16.64 15.68 14.94 13.75 12.88 12.15 11.49 9.09 7.94 7.55 7.27 6.84 5.72 4.77 4.42 3.85 3.03 2.34
ATF-38143 Typical Noise Parameters
VDS = 2 V, IDS = 10 mA Freq. Fmin opt GHz dB Mag. Ang. 0.5 0.9 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 0.18 0.19 0.20 0.23 0.25 0.28 0.32 0.39 0.52 0.65 0.75 0.84 0.95 1.10 1.20 0.66 0.64 0.63 0.60 0.57 0.56 0.54 0.52 0.44 0.44 0.45 0.48 0.51 0.55 0.56 13 22 26 43 60 67 81 98 129 166 -165 -135 -106 -84 -65 Rn/50 0.17 0.16 0.15 0.14 0.12 0.12 0.10 0.08 0.06 0.04 0.04 0.08 0.16 0.29 0.46 Ga dB 24.1 21.0 20.4 17.9 17.0 16.1 15.2 13.9 11.9 10.8 9.6 8.7 7.7 7.0 6.8
25 20
MSG/MAG and S21 (dB)
MSG
15 10 5 0 -5 -10 0
S21
MAG
2
4
6
8
10 12 14
16 18
FREQUENCY (GHz)
Figure 19. MSG/MAG and |S21|2 vs. Frequency at 2 V, 10 mA.
Notes: 1. Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information. 2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point.
8
ATF-38143 Typical Scattering Parameters, VDS = 2 V, IDS = 20 mA
Freq. (GHz)
0.5 0.8 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0
S11 Mag.
0.96 0.91 0.88 0.79 0.75 0.73 0.68 0.66 0.64 0.64 0.66 0.68 0.71 0.73 0.76 0.80 0.83 0.85 0.86 0.88 0.89 0.89 0.90
Ang.
-33 -53 -65 -93 -109 -119 -140 -159 172 147 124 103 83 65 50 34 18 6 -5 -19 -32 -42 -52
dB
19.50 18.94 18.51 17.23 16.41 15.88 14.52 13.26 11.16 9.52 8.12 6.77 5.41 4.25 3.39 2.27 1.11 -0.26 -1.51 -2.69 -3.80 -4.91 -6.29
S21 Mag.
9.436 8.850 8.425 7.269 6.616 6.220 5.321 4.604 3.616 2.992 2.548 2.179 1.864 1.632 1.478 1.299 1.136 0.971 0.840 0.734 0.646 0.568 0.485
Ang.
155 141 132 113 103 97 83 70 49 30 11 -8 -25 -41 -57 -74 -90 -106 -120 -134 -147 -161 -173
dB
-28.87 -25.19 -23.74 -21.41 -20.63 -20.26 -19.58 -19.09 -18.49 -17.99 -17.52 -17.33 -17.39 -17.27 -16.95 -16.89 -17.14 -17.72 -18.13 -18.42 -18.79 -19.02 -19.83
S12 Mag. Ang.
0.036 0.055 0.065 0.085 0.093 0.097 0.105 0.111 0.119 0.126 0.133 0.136 0.135 0.137 0.142 0.143 0.139 0.130 0.124 0.120 0.115 0.112 0.102 71 60 54 41 34 30 21 14 2 -9 -20 -32 -43 -53 -63 -76 -87 -98 -107 -118 -127 -138 -146
S22 Mag.
0.39 0.37 0.35 0.31 0.29 0.29 0.27 0.27 0.28 0.29 0.31 0.34 0.37 0.40 0.44 0.50 0.55 0.58 0.62 0.67 0.69 0.71 0.74
Ang.
-33 -50 -63 -90 -106 -116 -139 -157 174 151 129 107 87 73 61 44 28 11 -4 -13 -24 -36 -46
MSG/MAG (dB)
24.18 22.07 21.13 19.32 18.52 18.07 17.05 16.18 14.83 13.76 12.82 11.08 9.34 8.33 7.91 7.63 7.20 6.20 5.32 5.01 4.34 3.57 2.94
ATF-38143 Typical Noise Parameters
VDS = 2 V, IDS = 20 mA Freq. Fmin opt GHz dB Mag. Ang. 0.5 0.9 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 0.15 0.16 0.16 0.18 0.20 0.22 0.28 0.33 0.45 0.56 0.65 0.72 0.82 0.90 1.00 0.71 0.68 0.66 0.60 0.55 0.51 0.48 0.46 0.37 0.39 0.40 0.44 0.48 0.52 0.60 13 22 26 43 55 68 82 100 133 172 -159 -129 -100 -79 -61 Rn/50 0.13 0.12 0.12 0.09 0.09 0.09 0.08 0.06 0.05 0.04 0.04 0.08 0.15 0.26 0.40 Ga dB 24.8 21.4 21.0 19.0 18.0 16.9 15.5 14.7 12.6 11.4 10.2 9.3 8.3 7.5 7.3
25 20
MSG/MAG and S21 (dB)
MSG
15 10
S21 MAG
5 0 -5 -10 0
2
4
6
8
10 12 14
16 18
FREQUENCY (GHz)
Figure 20. MSG/MAG and |S21|2 vs. Frequency at 2 V, 20 mA.
Notes: 1. Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information. 2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point.
9
Noise Parameter Applications Information
Fmin values at 2 GHz and higher are based on measurements while the Fmins below 2 GHz have been extrapolated. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements, a true Fmin is calculated. Fmin represents the true minimum noise figure of the device when the device is presented with an impedance matching network that transforms the source impedance, typically 50, to an impedance represented by the reflection coefficient o. The designer must design a matching network that will present o to the device with minimal associated circuit losses. The noise figure of the completed amplifier is equal to the noise figure of the device plus the losses of the matching network preceding the device. The noise figure of the device is equal to Fmin only when the device is
presented with o. If the reflection coefficient of the matching network is other than o, then the noise figure of the device will be greater than Fmin based on the following equation. NF = Fmin + 4 Rn |s - o | 2 Zo (|1 + o| 2) (1 - s| 2) Where Rn /Zo is the normalized noise resistance, o is the optimum reflection coefficient required to produce Fmin and s is the reflection coefficient of the source impedance actually presented to the device. The losses of the matching networks are non-zero and they will also add to the noise figure of the device creating a higher amplifier noise figure. The losses of the matching networks are related to the Q of the components and associated printed circuit board loss. o is typically fairly low at higher frequencies and increases as frequency is lowered. Larger gate width devices will typically have a lower o as compared to narrower gate width devices.
Typically for FETs, the higher o usually infers that an impedance much higher than 50 is required for the device to produce Fmin. At VHF frequencies and even lower L Band frequencies, the required impedance can be in the vicinity of several thousand ohms. Matching to such a high impedance requires very hi-Q components in order to minimize circuit losses. As an example at 900 MHz, when air-wound coils (Q > 100) are used for matching networks, the loss can still be up to 0.25 dB which will add directly to the noise figure of the device. Using muilti-layer molded inductors with Qs in the 30 to 50 range results in additional loss over the air-wound coil. Losses as high as 0.5 dB or greater add to the typical 0.15 dB Fmin of the device creating an amplifier noise figure of nearly 0.65 dB. A discussion concerning calculated and measured circuit losses and their effect on amplifier noise figure is covered in Agilent Application 1085.
10
ATF-38143 SC70 4 Lead, High Frequency Nonlinear Model
INSIDE Package
Var Ean VAR VAR1 K=5 Z2=85 Z1=30 VIA2 V3 D=20.0 mil H=25.0 mil T=0.15 mil Rho=1.0 W=40.0 mil
GATE
Port G Num=1 VIA2 V1 D=20 mil H=25.0 mil T=0.15 mil Rho=1.0 W=40 mil TLINP TL4 Z=Z1 Ohm L=15 mil K=1 A=0.000 F=1 GHz TanD=0.001 TLINP TL3 Z=Z2 Ohm L=25 mil K=K A=0.000 F=1 GHz TanD=0.001
TLINP TL1 Z=Z2/2 Ohm L=20 0 mil K=K A=0.0000 F=1 GHz TanD=0.001 L L1 L=0.6 nH R=0.001 GaAsFET FET1 Model= MESFETN1 Mode= nonlinear
TLINP TL2 Z=Z2/2 Ohm L=20 0 mil K=K A=0.0000 F=1 GHz TanD=0.001 L L6 L=0.2 nH R=0.001 C C2 C=0.11 pF L L7 C=0.6 nH R=0.001 TLINP TL7 Z=Z2/2 Ohm L=5.0 mil K=K A=0.0000 F=1 GHz TanD=0.001 TLINP TL5 Z=Z2 Ohm L=26.0 mil K=K A=0.0000 F=1 GHz TanD=0.001
SOURCE
TLINP TL8 Z=Z1 Ohm L=15 mil K=1 A=0.0000 F=1 GHz TanD=0.001 TLINP TL6 Z=Z1 Ohm L=15 mil K=1 A=0.0000 F=1 GHz TanD=0.001 Port S2 Num=4
SOURCE
VIA2 V4 D=20.0 mil H=25.0 mil T=0.15 mil Rho=1.0 W=40.0 mil
DRAIN
Port D Num=3
Port S1 Num=2
VIA2 V2 D=20.0 mil H=25.0 mil T=0.15 mil Rho=1.0 W=40.0 mil
TLINP TL10 Z=Z1 Ohm L=15 mil K=1 A=0.000 F=1 GHz TanD=0.001
TLINP TL9 Z=Z2 Ohm L=10.0 mil K=K A=0.000 F=1 GHz TanD=0.001
L L4 L=0.2 nH R=0.001
MSub MSUB MSub1 H=25.0 mil Er=9.6 Mur=1 Cond=1.0E+50 Hu=3.9e+0.34 mil T=0.15 mil TanD=0 Rough=0 mil
The vias are not part of the model as such. They are only included to account for the source vias in the test fixture.
ATF-38143 Die Model
Statz Model MESFETM1 NFET=yes PFET=no Vto=-0.75 Beta=0.3 Lambda=0.07 Alpha=4 B=0.8 Tnom=27 Idstc= Vbi=0.7 Tau= Betatce= Delta1= Delta2= Gscap=3
Cgs=0.997 pF Gdcap=3 Cgd=0.176 pF Rgd=0.195 Tqm= Vmax= Fc= Rd=0.084 Rg=0.264 Rs=0.054 Ld=0.0014 nH Lg-0.0883 nH Ls=0.001 nH Cds=0.0911 pF Crf=0.0936
Rc=137 Gsfwd=1 Gsrev=0 Gdfwd=1 Gdrev=0 Vjr=1 Is=1 nA Ir=1 nA Imax=0.1 Xti= N= Eg= Vbr= Vtotc= Rin=
Taumd1=no Fnc=1E6 R=0.17 C=0.2 P=1 wVgfwd= wBvgs= wBvgd= wBvds= wldsmax= wPmax= All Params=
11
Part Number Ordering Information
Part Number ATF-38143-TR1 ATF-38143-TR2 ATF-38143-BLK ATF-38143-TR1G ATF-38143-TR2G ATF-38143-BLKG No. of Devices 3000 10000 100 3000 10000 100 Container 7" Reel 13" Reel antistatic bag 7" Reel 13" Reel antistatic bag
Note: For lead-free option, the part number will have the character "G" at the end.
Package Dimensions
SC70 4L / SOT-343
1.30 (.051) BSC
HE
E
1.15 (.045) BSC b1 D
A
A2
b
A1 L DIMENSIONS (mm)
C
SYMBOL E D HE A A2 A1 b b1 c L
MIN. 1.15 1.85 1.80 0.80 0.80 0.00 0.25 0.55 0.10 0.10
MAX. 1.35 2.25 2.40 1.10 1.00 0.10 0.40 0.70 0.20 0.46
NOTES: 1. All dimensions are in mm. 2. Dimensions are inclusive of plating. 3. Dimensions are exclusive of mold flash & metal burr. 4. All specifications comply to EIAJ SC70. 5. Die is facing up for mold and facing down for trim/form, ie: reverse trim/form. 6. Package surface to be mirror finish.
12
Recommended PCB Pad Layout for Agilent's SC70 4L/SOT-343 Products
1.30 0.051 1.00 0.039
Device Orientation
REEL
CARRIER TAPE USER FEED DIRECTION COVER TAPE TOP VIEW 4 mm END VIEW
0.60 0.024
2.00 0.079
8 mm
.090 0.035 1.15 0.045 Dimensions in inches mm
8Px 3Px
8Px 3Px
8Px 3Px
8Px 3Px
Tape Dimensions
For Outline 4T
P P0 D P2
E
F W C
D1 t1 (CARRIER TAPE THICKNESS) Tt (COVER TAPE THICKNESS)
10 MAX.
K0
10 MAX.
A0
B0
DESCRIPTION CAVITY LENGTH WIDTH DEPTH PITCH BOTTOM HOLE DIAMETER DIAMETER PITCH POSITION WIDTH THICKNESS WIDTH TAPE THICKNESS CAVITY TO PERFORATION (WIDTH DIRECTION) CAVITY TO PERFORATION (LENGTH DIRECTION)
SYMBOL A0 B0 K0 P D1 D P0 E W t1 C Tt F P2
SIZE (mm) 2.40 0.10 2.40 0.10 1.20 0.10 4.00 0.10 1.00 + 0.25 1.55 0.10 4.00 0.10 1.75 0.10 8.00 + 0.30 - 0.10 0.254 0.02 5.40 0.10 0.062 0.001 3.50 0.05 2.00 0.05
SIZE (INCHES) 0.094 0.004 0.094 0.004 0.047 0.004 0.157 0.004 0.039 + 0.010 0.061 + 0.002 0.157 0.004 0.069 0.004 0.315 + 0.012 0.0100 0.0008 0.205 + 0.004 0.0025 0.0004 0.138 0.002 0.079 0.002
PERFORATION
CARRIER TAPE COVER TAPE DISTANCE
www.agilent.com/semiconductors
For product information and a complete list of distributors, please go to our web site. For technical assistance call: Americas/Canada: +1 (800) 235-0312 or (916) 788-6763 Europe: +49 (0) 6441 92460 China: 10800 650 0017 Hong Kong: (65) 6756 2394 India, Australia, New Zealand: (65) 6755 1939 Japan: (+81 3) 3335-8152(Domestic/International), or 0120-61-1280(Domestic Only) Korea: (65) 6755 1989 Singapore, Malaysia, Vietnam, Thailand, Philippines, Indonesia: (65) 6755 2044 Taiwan: (65) 6755 1843 Data subject to change. Copyright (c) 2004 Agilent Technologies, Inc. Obsoletes 5968-7868E November 22, 2004 5989-1914EN


▲Up To Search▲   

 
Price & Availability of DEMO-ATF3X14-32

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X